

THE HEALTH IMPACTS OF LNG EXPANSION

The impacts of fossil fuels on human health are increasingly well documented.¹ They emit pollutants throughout their value chains, contributing to acute, chronic, and often bioaccumulative effects on human beings (across all stages of life and affecting most systems of the human body) and, more generally, on the environment.

Liquefied Natural Gas (LNG) contributes significantly to negative impacts on human health by producing greenhouse gases (notably carbon dioxide (CO₂) and methane) and various pollutants. These emissions occur at every stage of the value chain (including upstream extraction, midstream processing and liquefaction, shipping, regasification, distribution, and end-use combustion) and contribute to both local air quality problems and to global climate change. Overall, the upstream (extraction and production) segment is better documented than the midstream segments (especially relating to LNG-specific operations such as liquefaction or regasification). However, the latter also presents material and significant risks for human health.

The most studied health effects of the LNG value chain are linked to particulate matter (PM_{2.5}) pollution, which has been shown to cause increased morbidity and premature mortality globally. However, strong evidence increasingly links other air pollutants (such as nitrogen oxides (NO_x) and sulfur oxides (SO_x)), Volatile Organic Compounds (VOCs, such as benzene and toluene), and heavy metals, to a large range of health impacts (including respiratory, cardiovascular, carcinogenic, neurological impacts, adverse birth outcomes, and more).

Studies demonstrate numerous potential occupational hazards^{2,3} for workers in the LNG value chain, but also for communities neighboring LNG facilities. Globally, LNG contributes significantly to climate change, which induces a series of critical impacts on human health.⁴

There are multiple examples of studied impacts of shale/fracked⁵ gas (one of the main sources for LNG in some countries) extraction on community health in the United States (including Pennsylvania, Texas, Louisiana, Colorado, Oklahoma, or California), as well as Canada:

- Epidemiological studies conducted in the Marcellus Shale⁶ have found that residents living within a few kilometers of shale gas wells experience higher rates of respiratory symptoms, skin irritation, and stress-related conditions.^{7,8,9}
- Multiple studies conducted in various US states as well as in British Columbia, Canada, also reported associations between residential proximity to active well pads and increased risk of adverse birth outcomes (including preterm birth and low birth weight).^{10,11,12,13,14,15,16,17,18}
- A paper by the Yale School of Public Health¹⁹ showed that children living near wells that use fracking to harvest natural gas are two to three times more likely to contract a form of childhood leukemia.
- A Harvard Study²⁰ found that elderly people living near or downwind from gas pads have a higher risk of premature death.
- A study²¹ also found an association between cumulative unconventional natural gas development and increased hospitalization and mortality rates linked to acute myocardial infarction.
- Evidence from Oklahoma²² also highlights varied negative health outcomes from fracking activities.

There is also mounting evidence that midstream operations, including refining and liquefaction, pose serious health threats. Beyond occupational hazards linked to chemical exposure and industrial accident²³ risks, LNG export terminals have been associated with spikes in PM and NO_x linked to the liquefaction plants' operation and related maritime traffic, as well as VOCs, noise and light pollution. Cumulative exposure leads to increased health risks (overall increase in morbidity and premature mortality, including respiratory and cardiovascular diseases, neurological disorders, and cancers) for neighboring communities. Specific examples include Batangas City in the Philippines,²⁴ Gladstone in Australia,²⁵ or Cameron, Calcasieu Pass²⁶ and the infamous "Cancer Alley"²⁷ in Louisiana.

A report²⁸ by NGOs Greenpeace and Sierra Club based on the US Environmental Protection Agency (EPA)'s CO-Benefits Risk Assessment (COBRA) Health Impacts Screening and Mapping Tool estimated that the sole direct air pollution from LNG export terminals in the south of the United States could cause up to 149 premature deaths and US\$2.33 billion in health costs per year if all planned terminals were to be built.

Pollutant emissions and impacts on human health at each stage of the LNG value chain

Value chain segment	Pollutants	Health impacts
Global	<ul style="list-style-type: none"> PM and NO_x are emitted at multiple stages of the LNG value chain (production, liquefaction, shipping, regassification, combustion) VOCs, especially benzene, among other hazardous pollutants, are emitted in the upstream and midstream processes and have been linked to multiple health impacts (respiratory, cardiovascular, carcinogenic) GHG emissions, especially from methane (releases throughout the LNG value chain, including end-use combustion)^{29,30,31} 	<ul style="list-style-type: none"> Numerous peer-reviewed studies attribute regional premature mortality and morbidity to PM_{2.5}^{32,33,34} and NO_x^{35,36,37,38} sources, including shipping^{39,40,41} and industrial fossil-fuel infrastructure.^{42,43,44,45,46} Accumulated evidence from human epidemiological studies proves that occupational or environmental exposure to benzene causes acute non-lymphocytic leukemia, and strong evidence links it to other types of cancers.⁴⁷ Climate change has indirect health consequences (heat stress, infectious disease shifts, crop yields, etc.).
Extraction and production ⁴⁸	<ul style="list-style-type: none"> Methane (fugitive emissions and “super-emitters”),⁴⁹ Volatile Organic Compounds (VOCs: benzene, toluene, ethylbenzene, xylene), Hydrogen sulfide (in some basins), Particulate matter from diesel engines and flaring, NO_x from compressors/engines. 	<ul style="list-style-type: none"> VOCs, especially benzene (among other hazardous air pollutants), are linked to varied occupational hazards,⁵⁰ with chronic respiratory effects (e.g. exacerbating asthma), neurological symptoms,⁵¹ and increased cancer risk (benzene). Studies of oil & gas production regions report associations with increased respiratory, cardiovascular outcomes, kidney disease risk, and adverse birth outcomes in nearby populations.⁵²
Processing, compression, and transmission of natural gas	<ul style="list-style-type: none"> Methane slips from compressors, NO_x and PM from gas-fired compressors and pipeline pumping stations, VOCs from processing units and fugitive leaks, and CO₂ from fuel combustion. 	<p>Long-term exposure to PM_{2.5} and NO_x is causally linked to increased mortality from cardiovascular and respiratory disease; studies of population exposure near pipelines and compressor stations document elevated risks of respiratory and cardiovascular outcomes.⁵³</p>

Value chain segment	Pollutants	Health impacts
Liquefaction	<ul style="list-style-type: none"> CO₂ from energy used in refrigeration and power generation (gas-fired turbines), NO_x and PM from turbine stacks, Fugitive VOCs 	<ul style="list-style-type: none"> Local air pollutant emissions (NO_x, PM, VOCs) from large turbine stacks are associated with worsened local air quality and health burdens in nearby communities (cardiopulmonary disease, increased hospital admissions).⁵⁴ Episodic venting and flaring^{55,56} or accidental releases at large industrial facilities can spike hazardous air pollutant concentrations and produce varied health impacts (e.g. birth outcomes) in nearby communities.
Shipping	<ul style="list-style-type: none"> Methane slips from engines (especially in dual-fuel engines), NO_x, PM, Black carbon (soot), Depending on fuel and scrubbers, sulfur oxides (SO_x)⁵⁷ 	<p>Shipping emissions are a well-documented source of coastal and port air pollution. Peer-reviewed global and regional studies estimate that ship-sourced PM_{2.5} and NO_x contribute substantially to premature mortality, especially in port cities and downwind population centers.^{58,59,60} PM_{2.5} exposure is linked to increased risk of cardiovascular disease, respiratory disease, lung cancer, and all-cause mortality.</p>
Regasification and local distribution	<ul style="list-style-type: none"> NO_x and PM from gas turbines and burners used in regasification and power generation at terminals, VOCs and fugitive emissions during handling, Local increases in ozone precursors 	<p>Regasification and terminal operations⁶¹ generate local NO_x and PM emissions and are associated with increased shipping traffic (located in maritime industrial hubs); NO_x exposure is linked with increased pediatric asthma incidence and exacerbations, and with broader respiratory and cardiovascular morbidity.</p>
End-use combustion (power plants, ⁶² boilers, residential use)	<ul style="list-style-type: none"> Combustion emits NO_x, CO₂, PM and VOCs Residential cooking/heating with gas also elevates indoor NO_x. 	<ul style="list-style-type: none"> PM health impacts have been described above and are largely documented.^{63,64,65} NO_x exposure from gas combustion is linked to increased risk of childhood asthma onset and exacerbations, and long-term NO_x exposure is associated with increased all-cause mortality in cohort studies.^{66,67,68} Indoor gas stoves and boilers can raise indoor NO_x to levels associated with worsened respiratory outcomes; population-level burden analyses emphasize the importance of end-use exposure in urban areas where many homes use gas for heating and cooking.^{69,70,71}

HOW TO STUDY THE IMPACT OF FOSSIL FUELS ON HUMAN HEALTH?

The fossil fuel value chains — from exploration and extraction through processing and transport to end-use — produce a wide array of pollutants and stressors that affect human health. Understanding these effects requires a multidisciplinary approach that integrates environmental and exposure monitoring, epidemiological studies, and modelling.

To understand the impact of fossil fuels on human health, it is necessary to analyze:

- The pollution generated at each stage of the fossil fuel value chains,
- The exposure (levels, types) of human populations to the pollutants,
- The health impacts associated with the exposure (levels and types).

To do so, researchers use a combination of study types:

ENVIRONMENTAL AND EXPOSURE MONITORING

Goal: to measure pollutant emissions and concentrations in air, water, and soil at various stages of the fossil fuel chain.

Methods:

- **Ambient air monitoring:** use of stationary sensors or mobile monitors to measure pollutants (PM, NOx, SOx, O₃, VOCs, etc.) and methane near extraction sites, refineries, or transport corridors.
- **Personal monitoring:** use of personal (body/wearable or home) sensors to measure pollutants in communities neighboring extraction sites, refineries, or transport corridors.
- **Biomonitoring:** measurement of biomarkers in human samples (e.g. benzene metabolites in urine, heavy metals in blood) to assess internal exposure levels.
- **Remote sensing:** use of satellite data to estimate emissions (e.g. methane and PM) and regional exposure patterns.

Exposure monitoring often involves short-term measurements and requires substantial resources for long-term monitoring.

EPIDEMIOLOGICAL STUDIES

Goal: to establish statistical associations between exposure to fossil-fuel-related pollutants and health outcomes in human populations.

Methods:

Epidemiological studies use a variety of methods, often analytical observational studies:

- **cross-sectional studies**, measuring exposure and health status at the same time to identify correlations,
- **cohort studies**, following exposed and unexposed populations over time to assess the incidence of diseases,
- **case-control studies**, comparing past exposures among individuals with a specific disease (cases) and those without (controls),

To a lesser extent, research may also investigate the biological mechanistic effects of pollutants using (in vivo and in vitro) experimental studies.

Given the complexity of modern exposomes and the intricate and intertwined relations between exposure sources and health co-effects, epidemiological studies often focus on a limited population / geographical scope, as well as a few exposure and health impact parameters. This is to limit confounding factors, but also often because available resources are constrained.

QUANTITATIVE RISK AND HEALTH IMPACT ASSESSMENTS (HIA)

Goal: to estimate the public health burden (e.g., premature deaths, morbidity) attributable to emissions from fossil fuel activities.

Methods:

Quantitative assessments rely on complex modelling and statistical methods, combining exposure models and data with functions derived from epidemiological evidence to estimate health outcomes.

One example is the use of the Global Burden of Disease (GBD) to quantify premature mortality, DALYs (Disability-Adjusted Life Years), or health costs, attributable to PM and NO_x pollution ("Global Burden of Disease from Major Air Pollution Sources (GBD MAPS)"), which estimates that the combustion of fossil fuels contributed to one million deaths globally (27.3% of all mortality), of which 800,000 in South Asia or East Asia (32.5% of air pollution related deaths in those regions).⁷²

LIFECYCLE ASSESSMENT (LCA) AND INTEGRATED ASSESSMENT MODELING (IAM)

Goal: to evaluate the total environmental and health impacts across all stages of the fossil fuel value chain.

Methods:

Lifecycle Assessments (LCAs) encompass all the fossil fuel value chains, and aim to quantify energy use, emissions (GHGs, air pollutants), and potential human health impacts from cradle (extraction) to grave (combustion).

Integrated Assessment Models (IAMs) are complex computational frameworks used in the fields of environmental science, economics, and policy analysis to assess and evaluate the interrelationships between different factors and systems. With regard to air pollution, these models link energy systems, atmospheric chemistry, and health impact models to evaluate policy scenarios.

For instance, the GAINS model (Greenhouse gas – Air Pollution Interactions and Synergies) developed by the International Institute for Applied Systems Analysis (IIASA)⁷³ is an integrated assessment model applied in different continents, which allows the simulation of environmental impacts and costs of user-defined emission control scenarios, describing the relationship between atmospheric pollution and anthropogenic driving forces.

REFERENCES

1. Global Climate and Health Alliance (2025), "Cradle to Grave: the Health Toll of Fossil Fuels and the Imperative for a Just Transition"
2. Witter R.Z. et al. (2015), "Occupational Exposures in the Oil and Gas Extraction Industry: State of the Science and Research Recommendations"
3. Xi D. et al. (2025), "Characteristics of liquefied natural gas facility incidents and associated greenhouse gas emissions: A statistical analysis"
4. The Lancet (2025), "The 2025 report of the Lancet Countdown on health and climate change", <https://lancetcountdown.org/>
5. <https://www.niehs.nih.gov/health/topics/agents/fracking>
6. <https://marcelluscoalition.org/>
7. Rasmussen S.G. et al. (2016), "Association Between Unconventional Natural Gas Development in the Marcellus Shale and Asthma Exacerbations"
8. Denham A. et al. (2019), "Unconventional natural gas development and hospitalizations: evidence from Pennsylvania, United States, 2003-2014"
9. Ferrar K.J. et al. (2013), "Assessment and longitudinal analysis of health impacts and stressors perceived to result from unconventional shale gas development in the Marcellus Shale region"
10. Currie J. et al. (2017), "Hydraulic fracturing and infant health: New evidence from Pennsylvania"
11. Casey J.A. et al. (2016), "Unconventional Natural Gas Development and Birth Outcomes in Pennsylvania"
12. Stacy S.L. et al. (2015), "Perinatal Outcomes and Unconventional Natural Gas Operations in Southwest Pennsylvania"
13. McKenzie L.M. et al. (2019), "Congenital heart defects and intensity of oil and gas well site activities in early pregnancy"
14. Gonzalez, D. et al. (2020), "Oil and gas production and spontaneous preterm birth in the San Joaquin Valley, CA. A case-control study"
15. Cairncross Z. et al. (2022), "Association Between Residential Proximity to Hydraulic Fracturing Sites and Adverse Birth Outcomes"
16. Carbon-Beaudoin L. (2021), "Density and proximity to hydraulic fracturing wells and birth outcomes in Northeastern British Columbia"
17. Tran K.V., et al. (2020), "Residential Proximity to Oil and Gas Development and Birth Outcomes in California: A Retrospective Cohort Study of 2006-2015 Births"
18. Whitworth K. et al. (2018), "Drilling and Production Activity Related to Unconventional Gas Development and Severity of Preterm Birth"
19. Clark C.J. et al. (2022), "Unconventional Oil and Gas Development Exposure and Risk of Childhood Acute Lymphoblastic Leukemia: A Case-Control Study in Pennsylvania, 2009-2017" <https://e360.yale.edu/features/fracking-gas-chemicals-health-pennsylvania>
20. Li L. et al. (2021), "Exposure to Unconventional Oil and Gas Development and All-cause Mortality in Medicare Beneficiaries"
21. Denham A. et al. (2021), "Acute myocardial infarction associated with unconventional natural gas development: A natural experiment"
22. Apergis N. et al. (2021), "An analysis of the impact of unconventional oil and gas activities on public health: New evidence across Oklahoma counties"
23. Greenpeace (2024), "The perils and the catastrophic potential of LNG"
24. Cordero DA Jr. (2024), "Liquefied Natural Gas in the Philippines: Clarifications and Interventions for Environmental and Public Health"
25. Benham C.F. (2022), "Impact geographies of gas terminal development in the northern Australian context: insights from Gladstone and Darwin"
26. Louisiana Bucket Brigade (2022), "Operational problems at Cameron LNG and Calcasieu Pass"
27. <https://www.hrw.org/report/2024/01/25/were-dying-here/fight-life-louisiana-fossil-fuel-sacrifice-zone>, <https://sps.columbia.edu/news/endless-shame-louisianas-cancer-alley>
28. Greenpeace, Sierra Club (2024), "Permit To Kill: Potential health and economic impacts from U.S. LNG export terminal permitted emissions"
29. Howarth, R. W. (2024), "The Greenhouse Gas footprint of Liquefied Natural Gas"
30. Abrahams et al. (2015), "Life Cycle Greenhouse Gas emissions from U.S. Liquefied Natural Gas"
31. Littlefield et al. (2022), "Life Cycle GHG Perspective on U.S. Natural Gas Delivery Pathways"
32. Xing et al. (2016), "The impact of PM2.5 on the human respiratory system"
33. E. McDuffie et al. (2021), "Source sector and fuel contributions to ambient PM2.5 and attributable mortality across multiple spatial scales"
34. Institute for Health Metrics and Evaluation (IHME) (2024), "Global health costs of ambient PM2.5 from combustion sources: a modelling study supporting air pollution control strategies"
35. Kashtan et al. (2024), "Nitrogen dioxide exposure, health outcomes, and associated demographic disparities due to gas and propane combustion by U.S. stoves"
36. Stieb D.M. et al. (2021), "Systematic review and meta-analysis of cohort studies of long term outdoor nitrogen dioxide exposure and mortality"
37. Chen X. et al. (2024), "Long-term NO₂ exposure and mortality: A comprehensive meta-analysis"

REFERENCES

38. Faustini A. et al. (2014), "Nitrogen dioxide and mortality: review and meta-analysis of long-term studies"
39. Viana et al. (2020), "Estimated health impacts from maritime transport in the EU"
40. Ramacher et al. (2020), "The impact of ship emissions on air quality and human health"
41. Mueller et al (2023), "Health impact assessments of shipping and port-sourced air pollution on a global scale: A scoping literature review"
42. Health Effects Institute (HEI) / Institute for Health Metrics and Evaluation (IHME), State of Global Air, "Air Pollution and Health: The Global Impacts of Fossil Fuels"
43. N. Fann et al. (2018), "Assessing Human Health PM2.5 and Ozone Impacts from U.S. Oil and Natural Gas Sector Emissions in 2025"
44. Lehtomäki H, Rao S, Hänninen O. (2023), "Phasing out fossil fuels would save millions of lives worldwide"
45. Lelieveld J, Klingmüller K, Pozzer A, Burnett RT, Haines A, Ramanathan V. (2019), "Effects of fossil fuel and total anthropogenic emission removal on public health and climate"
46. Vohra K, Vodonos A, Schwartz J, Marais EA, Sulprizio MP, Mickley LJ. (2023), "Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem."
47. WHO/IARC (2018), "IARC monographs on the evaluation of benzene-related carcinogenic risks to humans"
48. J.L. Calderon et al. (2016), "Managing upstream oil and gas emissions: A public health-oriented approach"
49. According to the US Environmental Protection Agency (EPA), "super-emitter events are large leaks or releases of methane located at or near an oil and natural gas facility with an emission rate of 100 kilograms per hour of methane or greater".
50. Al-Lami NJK, Awad NAN, Al-Taher SSH (2025), "Clinical study on the relationship between exposure to ultrafine particles (PM0.1) and cardiovascular diseases in petroleum workers"
51. Christina L. Norris, Dale P. Sandler, et al. (2025), "Fine particulate matter from burning oil and gas and associated neurological symptoms among Deepwater Horizon oil spill cleanup workers"
52. Okoye OC, Carnegie E, Mora L. (2022), "Air Pollution and Chronic Kidney Disease Risk in Oil and Gas-Situated Communities: A Systematic Review and Meta-Analysis"
53. Curtis D. Davis et al. (2023), "Community Health Impacts From Natural Gas Pipeline Compressor Stations"
54. Greenpeace, Sierra Club (2024), Op. Cit.
55. Lara J Cushing et al. (2020), "Flaring from Unconventional Oil and Gas Development and Birth Outcomes in the Eagle Ford Shale in South Texas"
56. Minet L. et al. (2025), "Analysis of Flaring Activity at Liquefied Natural Gas (LNG) Export Facilities Worldwide"
57. lower for LNG-fueled ships than heavy fuel oil, but not zero
58. Viana et al. (2020), Op. Cit.
59. Ramacher et al. (2020), Op. Cit.
60. Mueller et al (2023), Op. Cit.
61. <https://gasoutlook.com/opinion/ramp-up-of-lng-in-europe-a-health-risk/>
62. Henneman L. et al. (2023), "Mortality risk from United States coal electricity generation"
63. Xing et al. (2016), Op. Cit.
64. E. McDuffie et al. (2021), Op. Cit.
65. Institute for Health Metrics and Evaluation (IHME) (2024), Op. Cit.
66. Stieb D.M. et al. (2021), Op. Cit.
67. Chen X. et al. (2024), Op. Cit.
68. Faustini A. et al. (2014), Op. Cit.
69. Lin W. et al. (2013), "Meta-analysis of the effects of indoor nitrogen dioxide and gas cooking on asthma and wheeze in children"
70. Gruenwald T. et al. (2022), "Population Attributable Fraction of Gas Stoves and Childhood Asthma in the United States"
71. Kashtan et al. (2023), Op. Cit.
72. E. McDuffie et al. (2021), Op. Cit.
73. <https://gains.iiasa.ac.at/models/>

CREDITS

Pexels - Pixabay - iStock- Unsplash-

Reclaim Finance is an NGO affiliated with Friends of the Earth France. It was founded in 2020 and is 100% dedicated to issues linking finance with social and climate justice. In the context of the climate emergency and biodiversity losses, one of Reclaim Finance's priorities is to accelerate the decarbonization of financial flows. Reclaim Finance exposes the climate impacts of financial players, denounces the most harmful practices and puts its expertise at the service of public authorities and financial stakeholders who desire to bend existing practices to ecological imperatives.